5,009 research outputs found

    The Schwinger SU(3) Construction - II: Relations between Heisenberg-Weyl and SU(3) Coherent States

    Get PDF
    The Schwinger oscillator operator representation of SU(3), studied in a previous paper from the representation theory point of view, is analysed to discuss the intimate relationships between standard oscillator coherent state systems and systems of SU(3) coherent states. Both SU(3) standard coherent states, based on choice of highest weight vector as fiducial vector, and certain other specific systems of generalised coherent states, are found to be relevant. A complete analysis is presented, covering all the oscillator coherent states without exception, and amounting to SU(3) harmonic analysis of these states.Comment: Latex, 51 page

    Parametrizing the mixing matrix : A unified approach

    Get PDF
    A unified approach to parametrization of the mixing matrix for NN generations is developed. This approach not only has a clear geometrical underpinning but also has the advantage of being economical and recursive and leads in a natural way to the known phenomenologically useful parametrizations of the mixing matrix.Comment: 8 pages, LaTe

    A classical optical approach to the `non-local Pancharatnam-like phases' in Hanbury-Brown-Twiss correlations

    Full text link
    We examine a recent proposal to show the presence of nonlocal Pancharatnam type geometric phases in a quantum mechanical treatment of intensity interferometry measurements upon inclusion of polarizing elements in the setup. It is shown that a completely classical statistical treatment of such effects is adequate for practical purposes. Further we show that the phase angles that appear in the correlations, while at first sight appearing to resemble Pancharatnam phases in their mathematical structure, cannot actually be interpreted in that manner. We also describe a simpler Mach-Zehnder type setup where similar effects can be observed without use of the paraxial approximation.Comment: Minor corrections, published versio

    Entanglement and Complete Positivity: Relevance and Manifestations in Classical Scalar Wave Optics

    Full text link
    Entanglement of states and Complete Positivity of maps are concepts that have achieved physical importance with the recent growth of quantum information science. They are however mathematically relevant whenever tensor products of complex linear (Hilbert) spaces are involved. We present such situations in classical scalar paraxial wave optics where these concepts play a role: propagation characteristics of coherent and partially coherent Gaussian beams; and the definition and separability of the family of Twisted Gaussian Schell Model (TGSM) beams. In the former, the evolution of the width of a projected one-dimensional beam is shown to be a signature of entanglement in a two-dimensional amplitude. In the latter, the partial transpose operation is seen to explain key properties of TGSM beams.Comment: 7 pages Revtex 4-

    Wigner distributions for finite state systems without redundant phase point operators

    Get PDF
    We set up Wigner distributions for NN state quantum systems following a Dirac inspired approach. In contrast to much of the work on this case, requiring a 2N×2N2N\times 2N phase space, particularly when NN is even, our approach is uniformly based on an N×NN\times N phase space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both NN odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the NN odd case permits full implementation of the marginals property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.Comment: Latex, 14 page

    Classical Light Beams and Geometric Phases

    Full text link
    We present a study of geometric phases in classical wave and polarisation optics using the basic mathematical framework of quantum mechanics. Important physical situations taken from scalar wave optics, pure polarisation optics, and the behaviour of polarisation in the eikonal or ray limit of Maxwell's equations in a transparent medium are considered. The case of a beam of light whose propagation direction and polarisation state are both subject to change is dealt with, attention being paid to the validity of Maxwell's equations at all stages. Global topological aspects of the space of all propagation directions are discussed using elementary group theoretical ideas, and the effects on geometric phases are elucidated.Comment: 23 pages, 1 figur

    The Sampling Theorem and Coherent State Systems in Quantum Mechanics

    Get PDF
    The well known Poisson Summation Formula is analysed from the perspective of the coherent state systems associated with the Heisenberg--Weyl group. In particular, it is shown that the Poisson summation formula may be viewed abstractly as a relation between two sets of bases (Zak bases) arising as simultaneous eigenvectors of two commuting unitary operators in which geometric phase plays a key role. The Zak bases are shown to be interpretable as generalised coherent state systems of the Heisenberg--Weyl group and this, in turn, prompts analysis of the sampling theorem (an important and useful consequence of the Poisson Summation Formula) and its extension from a coherent state point of view leading to interesting results on properties of von Neumann and finer lattices based on standard and generalised coherent state systems.Comment: 20 pages, Late

    Statistical modelling for integrative analysis of multi-omics data

    Get PDF
    Goeman, J.J. [Promotor]Wiel, M.A. van de [Promotor]Menezes, R.X. de [Copromotor
    corecore